USN					

NEW SCHEME

Third Semester B.E. Degree Examination, Dec. 06 / Jan. 07 EE / EC / IT / TC / BM / ML / CS / IS

Electronics Circuits

Time: 3 hrs.]

[Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Missing data may be suitably assumed.

- Explain diffusion capacitance. Obtain an expression for the diffusion capacitance in a P-N diode. (97 Marks)
 - What is a voltage multiplier circuit? Explain the operation of a full wave voltage doubler circuit. (07 Marks)
 - Assuming ideal diode in the circuit shown below, draw the output voltage for the given input signal.

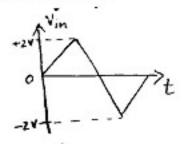
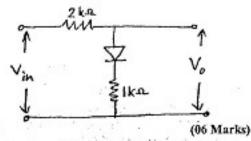



Fig.1(c)

- 2 a. Draw and explain a double diode clipper circuit, which limits the output at two independent levels. (06 Marks)
 - Explain how a diode can be used in a transistor to compensate for changes in I_{CO}.

 (06 Marks)
 - For the circuit shown in the Fig.2(c) determine I_C, V_{CE}, R₁, V_B.

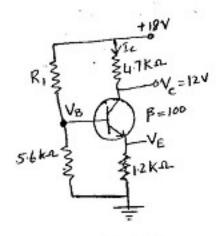


Fig.2(c)

(08 Marks)

- 3 a Explain how h-parameters can be obtained from the static characteristics of a transistor. (06 Marks)
 - State and explain Millers theorem.

(04 Marks)

Contd 2

For the common emitter amplifier with collector to base bias shown in the Fig.3(c)
 Calculate: A_i, R_i, R'_i, A_v and A_{vs}

Given: $h_{ie} = 1.1 \text{ k}$; $h_{fl} = 50$ $h_{oe} = 25 \mu\text{A/V}$; $h_{re} = 2.5 \times 10^{-4}$

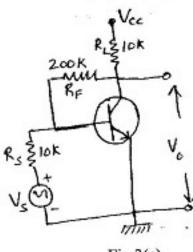


Fig.3(c)

(10 Marks)

- a. Draw the hybrid π tendel of a transistor and explain the significance of each component in the model. (96 Marks)
 - b. Derive expressions for transistor transconductance g_m and input conductance g_{b'e}.
 (10 Marks)
 - Explain the various types of distortions encountered in amplifiers. (04 Marks)
- a. What is negative feedback in amplifiers? Show that negative feedback increases the bandwidth of an amplifier. (08 Marks)
 - Derive an expression for the input resistance with feedback amplifier employing voltage series feedback. (06 Marks)
 - c. An amplifier with negative feedback has voltage gain 120. It is found that without feedback an input signal of 60mV is required to produce a particular output, whereas with feedback the input signal must be 0.5V to get the same input. Find A_V and β of the amplifier. (06 Marks)
- a. Show that a transformer coupled class-A amplifier has a maximum power efficiency of 50%.

 (07 Marks)
 - With circuit diagram explain the working of class-B push-pull amplifier. Also obtain an expression for the maximum conversion efficiency of this amplifier. (09 Marks)
 - c. How much maximum power can be dissipated in the individual transistors of a class-B push-pull power amplifier if $V_{CC} = 20V$ and $R_L = 4\Omega$. (04 Marks)
- With usual notations derive an expression for the voltage gain of a practical inverting op-amp.
 - Describe a method of measuring and calculating CMRR of an op-amp. (06 Marks)
 - c. What are the advantages of active filters over passive ones? Design a first order high pass filter at a cutoff frequency of 10 kHz with a pass band gain of 1.5. (08 Marks)
- 8 a. Draw an inverting op-amp Schmitt trigger circuit and explain its working. (06 Marks)
 - b. Explain the principle of operation of a R-2R ladder type D to A converter. (06 Marks)
 - With the help of a neat diagram and relevant waveforms explain the working of a monostable multivibrator circuit using 555 timer. (08 Marks)